Module

Data.Functor.Coproduct.Nested

#Coproduct1

type Coproduct1 a = C2 a (Const Void)

#Coproduct2

type Coproduct2 a b = C3 a b (Const Void)

#Coproduct3

type Coproduct3 a b c = C4 a b c (Const Void)

#Coproduct4

type Coproduct4 a b c d = C5 a b c d (Const Void)

#Coproduct5

type Coproduct5 a b c d e = C6 a b c d e (Const Void)

#Coproduct6

type Coproduct6 a b c d e f = C7 a b c d e f (Const Void)

#Coproduct7

type Coproduct7 a b c d e f g = C8 a b c d e f g (Const Void)

#Coproduct8

type Coproduct8 a b c d e f g h = C9 a b c d e f g h (Const Void)

#Coproduct9

type Coproduct9 a b c d e f g h i = C10 a b c d e f g h i (Const Void)

#Coproduct10

type Coproduct10 a b c d e f g h i j = C11 a b c d e f g h i j (Const Void)

#C2

type C2 a z = Coproduct a z

#C3

type C3 a b z = Coproduct a (C2 b z)

#C4

type C4 a b c z = Coproduct a (C3 b c z)

#C5

type C5 a b c d z = Coproduct a (C4 b c d z)

#C6

type C6 a b c d e z = Coproduct a (C5 b c d e z)

#C7

type C7 a b c d e f z = Coproduct a (C6 b c d e f z)

#C8

type C8 a b c d e f g z = Coproduct a (C7 b c d e f g z)

#C9

type C9 a b c d e f g h z = Coproduct a (C8 b c d e f g h z)

#C10

type C10 a b c d e f g h i z = Coproduct a (C9 b c d e f g h i z)

#C11

type C11 a b c d e f g h i j z = Coproduct a (C10 b c d e f g h i j z)

#(<\/>)

Operator alias for Data.Functor.Coproduct.coproduct (right-associative / precedence 6)

#type (<\/>)

Operator alias for Data.Functor.Coproduct.Coproduct (right-associative / precedence 6)

#in1

in1 :: forall a z. a ~> (C2 a z)

#in2

in2 :: forall a b z. b ~> (C3 a b z)

#in3

in3 :: forall a b c z. c ~> (C4 a b c z)

#in4

in4 :: forall a b c d z. d ~> (C5 a b c d z)

#in5

in5 :: forall a b c d e z. e ~> (C6 a b c d e z)

#in6

in6 :: forall a b c d e f z. f ~> (C7 a b c d e f z)

#in7

in7 :: forall a b c d e f g z. g ~> (C8 a b c d e f g z)

#in8

in8 :: forall a b c d e f g h z. h ~> (C9 a b c d e f g h z)

#in9

in9 :: forall a b c d e f g h i z. i ~> (C10 a b c d e f g h i z)

#in10

in10 :: forall a b c d e f g h i j z. j ~> (C11 a b c d e f g h i j z)

#at1

at1 :: forall r x a z. r -> (a x -> r) -> C2 a z x -> r

#at2

at2 :: forall r x a b z. r -> (b x -> r) -> C3 a b z x -> r

#at3

at3 :: forall r x a b c z. r -> (c x -> r) -> C4 a b c z x -> r

#at4

at4 :: forall r x a b c d z. r -> (d x -> r) -> C5 a b c d z x -> r

#at5

at5 :: forall r x a b c d e z. r -> (e x -> r) -> C6 a b c d e z x -> r

#at6

at6 :: forall r x a b c d e f z. r -> (f x -> r) -> C7 a b c d e f z x -> r

#at7

at7 :: forall r x a b c d e f g z. r -> (g x -> r) -> C8 a b c d e f g z x -> r

#at8

at8 :: forall r x a b c d e f g h z. r -> (h x -> r) -> C9 a b c d e f g h z x -> r

#at9

at9 :: forall r x a b c d e f g h i z. r -> (i x -> r) -> C10 a b c d e f g h i z x -> r

#at10

at10 :: forall r x a b c d e f g h i j z. r -> (j x -> r) -> C11 a b c d e f g h i j z x -> r

#coproduct1

coproduct1 :: forall a. (Coproduct1 a) ~> a

#coproduct2

coproduct2 :: forall r x a b. (a x -> r) -> (b x -> r) -> Coproduct2 a b x -> r

#coproduct3

coproduct3 :: forall r x a b c. (a x -> r) -> (b x -> r) -> (c x -> r) -> Coproduct3 a b c x -> r

#coproduct4

coproduct4 :: forall r x a b c d. (a x -> r) -> (b x -> r) -> (c x -> r) -> (d x -> r) -> Coproduct4 a b c d x -> r

#coproduct5

coproduct5 :: forall r x a b c d e. (a x -> r) -> (b x -> r) -> (c x -> r) -> (d x -> r) -> (e x -> r) -> Coproduct5 a b c d e x -> r

#coproduct6

coproduct6 :: forall r x a b c d e f. (a x -> r) -> (b x -> r) -> (c x -> r) -> (d x -> r) -> (e x -> r) -> (f x -> r) -> Coproduct6 a b c d e f x -> r

#coproduct7

coproduct7 :: forall r x a b c d e f g. (a x -> r) -> (b x -> r) -> (c x -> r) -> (d x -> r) -> (e x -> r) -> (f x -> r) -> (g x -> r) -> Coproduct7 a b c d e f g x -> r

#coproduct8

coproduct8 :: forall r x a b c d e f g h. (a x -> r) -> (b x -> r) -> (c x -> r) -> (d x -> r) -> (e x -> r) -> (f x -> r) -> (g x -> r) -> (h x -> r) -> Coproduct8 a b c d e f g h x -> r

#coproduct9

coproduct9 :: forall r x a b c d e f g h i. (a x -> r) -> (b x -> r) -> (c x -> r) -> (d x -> r) -> (e x -> r) -> (f x -> r) -> (g x -> r) -> (h x -> r) -> (i x -> r) -> Coproduct9 a b c d e f g h i x -> r

#coproduct10

coproduct10 :: forall r x a b c d e f g h i j. (a x -> r) -> (b x -> r) -> (c x -> r) -> (d x -> r) -> (e x -> r) -> (f x -> r) -> (g x -> r) -> (h x -> r) -> (i x -> r) -> (j x -> r) -> Coproduct10 a b c d e f g h i j x -> r

Modules