Module

Data.Lens.Zoom

This module defines functions for zooming in a state monad.

#zoom

zoom :: forall a s r m. Optic' (Star (Focusing m r)) s a -> StateT a m r -> StateT s m r

Zooms into a substate in a StateT transformer.

Re-exports from Data.Lens.Types

#Traversal'

type Traversal' s a = Traversal s s a a

#Traversal

type Traversal s t a b = forall p. Wander p => Optic p s t a b

A traversal.

#Tagged

#Stall

data Stall a b s t

The Stall profunctor characterizes an AffineTraversal.

Constructors

Instances

#Shop

data Shop a b s t

The Shop profunctor characterizes a Lens.

Constructors

  • Shop (s -> a) (s -> b -> t)

Instances

#Setter'

type Setter' s a = Setter s s a a

#Setter

type Setter s t a b = Optic Function s t a b

A setter.

#Review'

type Review' s a = Review s s a a

#Review

type Review s t a b = Optic Tagged s t a b

#Re

newtype Re p s t a b

Constructors

  • Re (p b a -> p t s)

Instances

#Prism'

type Prism' s a = Prism s s a a

#Prism

type Prism s t a b = forall p. Choice p => Optic p s t a b

A prism.

#Optic'

type Optic' p s a = Optic p s s a a

#Optic

type Optic p s t a b = p a b -> p s t

#Market

data Market a b s t

The Market profunctor characterizes a Prism.

Constructors

Instances

#Lens'

type Lens' s a = Lens s s a a

Lens' is a specialization of Lens. An optic of type Lens' can change only the value of its focus, not its type. As an example, consider the Lens _2, which has this type:

_2 :: forall s t a b. Lens (Tuple s a) (Tuple t b) a b

_2 can produce a Tuple Int String from a Tuple Int Int:

set _2 "NEW" (Tuple 1 2) == (Tuple 1 "NEW")

If we specialize _2's type with Lens', the following will not type check:

set (_2 :: Lens' (Tuple Int Int) Int) "NEW" (Tuple 1 2)
           ^^^^^^^^^^^^^^^^^^^^^^^^^

See Data.Lens.Getter and Data.Lens.Setter for functions and operators frequently used with lenses.

#Lens

type Lens s t a b = forall p. Strong p => Optic p s t a b

Given a type whose "focus element" always exists, a lens provides a convenient way to view, set, and transform that element.

For example, _2 is a tuple-specific Lens available from Data.Lens, so:

over _2 String.length $ Tuple "ignore" "four" == Tuple "ignore" 4

Note the result has a different type than the original tuple. That is, the four Lens type variables have been narrowed to:

  • s is Tuple String String
  • t is Tuple String Int
  • a is String
  • b is Int

See Data.Lens.Getter and Data.Lens.Setter for functions and operators frequently used with lenses.

#Iso'

type Iso' s a = Iso s s a a

#Iso

type Iso s t a b = forall p. Profunctor p => Optic p s t a b

A generalized isomorphism.

#IndexedTraversal'

type IndexedTraversal' i s a = IndexedTraversal i s s a a

#IndexedTraversal

type IndexedTraversal i s t a b = forall p. Wander p => IndexedOptic p i s t a b

An indexed traversal.

#IndexedSetter'

type IndexedSetter' i s a = IndexedSetter i s s a a

#IndexedSetter

type IndexedSetter i s t a b = IndexedOptic Function i s t a b

An indexed setter.

#IndexedOptic'

type IndexedOptic' p i s a = IndexedOptic p i s s a a

#IndexedOptic

type IndexedOptic p i s t a b = Indexed p i a b -> p s t

#IndexedLens'

type IndexedLens' i s a = IndexedLens i s s a a

#IndexedLens

type IndexedLens i s t a b = forall p. Strong p => IndexedOptic p i s t a b

An indexed lens.

#IndexedGetter'

type IndexedGetter' i s a = IndexedGetter i s s a a

#IndexedGetter

type IndexedGetter i s t a b = IndexedFold a i s t a b

#IndexedFold'

type IndexedFold' r i s a = IndexedFold r i s s a a

#IndexedFold

type IndexedFold r i s t a b = IndexedOptic (Forget r) i s t a b

#Indexed

newtype Indexed p i s t

Constructors

Instances

#Grating

newtype Grating a b s t

Instances

#Grate'

type Grate' s a = Grate s s a a

#Grate

type Grate s t a b = forall p. Closed p => Optic p s t a b

A grate (http://r6research.livejournal.com/28050.html)

#Getter'

type Getter' s a = Getter s s a a

#Getter

type Getter s t a b = forall r. Fold r s t a b

#Forget

newtype Forget r a b

Constructors

Instances

#Fold'

type Fold' r s a = Fold r s s a a

#Fold

type Fold r s t a b = Optic (Forget r) s t a b

#Exchange

data Exchange a b s t

The Exchange profunctor characterizes an Iso.

Constructors

Instances

#AnIso'

type AnIso' s a = AnIso s s a a

#AnIso

type AnIso s t a b = Optic (Exchange a b) s t a b

#AnIndexedLens'

type AnIndexedLens' i s a = AnIndexedLens i s s a a

#AnIndexedLens

type AnIndexedLens i s t a b = IndexedOptic (Shop (Tuple i a) b) i s t a b

#AnAffineTraversal'

#AnAffineTraversal

type AnAffineTraversal s t a b = Optic (Stall a b) s t a b

#AffineTraversal'

#AffineTraversal

type AffineTraversal s t a b = forall p. Strong p => Choice p => Optic p s t a b

An affine traversal (has at most one focus, but is not a prism).

#ATraversal'

type ATraversal' s a = ATraversal s s a a

#ATraversal

type ATraversal s t a b = Optic (Bazaar Function a b) s t a b

#APrism'

type APrism' s a = APrism s s a a

#APrism

type APrism s t a b = Optic (Market a b) s t a b

#ALens'

type ALens' s a = ALens s s a a

#ALens

type ALens s t a b = Optic (Shop a b) s t a b

#AGrate'

type AGrate' s a = AGrate s s a a

#AGrate

type AGrate s t a b = Optic (Grating a b) s t a b

#AGetter'

type AGetter' s a = AGetter s s a a

#AGetter

type AGetter s t a b = Fold a s t a b

#Wander

class (Strong p, Choice p) <= Wander p  where

Class for profunctors that support polymorphic traversals.

Members

  • wander :: forall s t a b. (forall f. Applicative f => (a -> f b) -> s -> f t) -> p a b -> p s t

Instances

Modules