Module

Data.Witherable

#Witherable

class (Filterable t, Traversable t) <= Witherable t  where

Witherable represents data structures which can be partitioned with effects in some Applicative functor.

  • wilt - partition a structure with effects
  • wither - filter a structure with effects

Laws:

  • Naturality: t <<< wither f ≡ wither (t <<< f)
  • Identity: wither (pure <<< Just) ≡ pure
  • Composition: Compose <<< map (wither f) <<< wither g ≡ wither (Compose <<< map (wither f) <<< g)
  • Multipass partition: wilt p ≡ map separate <<< traverse p
  • Multipass filter: wither p ≡ map compact <<< traverse p

Superclass equivalences:

  • partitionMap p = runIdentity <<< wilt (Identity <<< p)
  • filterMap p = runIdentity <<< wither (Identity <<< p)
  • traverse f ≡ wither (map Just <<< f)

Default implementations are provided by the following functions:

  • wiltDefault
  • witherDefault
  • partitionMapByWilt
  • filterMapByWither
  • traverseByWither

Members

Instances

#partitionMapByWilt

partitionMapByWilt :: forall t a l r. Witherable t => (a -> Either l r) -> t a -> { left :: t l, right :: t r }

A default implementation of partitionMap given a Witherable.

#filterMapByWither

filterMapByWither :: forall t a b. Witherable t => (a -> Maybe b) -> t a -> t b

A default implementation of filterMap given a Witherable.

#traverseByWither

traverseByWither :: forall t m a b. Witherable t => Applicative m => (a -> m b) -> t a -> m (t b)

A default implementation of traverse given a Witherable.

#wilted

wilted :: forall t m l r. Witherable t => Applicative m => t (m (Either l r)) -> m { left :: t l, right :: t r }

Partition between Left and Right values - with effects in m.

#withered

withered :: forall t m x. Witherable t => Applicative m => t (m (Maybe x)) -> m (t x)

Filter out all the Nothing values - with effects in m.

#witherDefault

witherDefault :: forall t m a b. Witherable t => Applicative m => (a -> m (Maybe b)) -> t a -> m (t b)

A default implementation of wither using compact.

#wiltDefault

wiltDefault :: forall t m a l r. Witherable t => Applicative m => (a -> m (Either l r)) -> t a -> m { left :: t l, right :: t r }

A default implementation of wilt using separate

Re-exports from Data.Filterable

#Filterable

class (Compactable f, Functor f) <= Filterable f 

Filterable represents data structures which can be partitioned/filtered.

  • partitionMap - partition a data structure based on an either predicate.
  • partition - partition a data structure based on boolean predicate.
  • filterMap - map over a data structure and filter based on a maybe.
  • filter - filter a data structure based on a boolean.

Laws:

  • Functor Relation: filterMap identity ≡ compact

  • Functor Identity: filterMap Just ≡ identity

  • Kleisli Composition: filterMap (l <=< r) ≡ filterMap l <<< filterMap r

  • filter ≡ filterMap <<< maybeBool

  • filterMap p ≡ filter (isJust <<< p)

  • Functor Relation: partitionMap identity ≡ separate

  • Functor Identity 1: _.right <<< partitionMap Right ≡ identity

  • Functor Identity 2: _.left <<< partitionMap Left ≡ identity

  • f <<< partition ≡ partitionMap <<< eitherBool where f = \{ no, yes } -> { left: no, right: yes }

  • f <<< partitionMap p ≡ partition (isRight <<< p) where f = \{ left, right } -> { no: left, yes: right}

Default implementations are provided by the following functions:

  • partitionDefault
  • partitionDefaultFilter
  • partitionDefaultFilterMap
  • partitionMapDefault
  • filterDefault
  • filterDefaultPartition
  • filterDefaultPartitionMap
  • filterMapDefault

Instances

Modules